The Cell Wall Integrity Signaling Pathway and Its Involvement in Secondary Metabolite Production

نویسنده

  • Vito Valiante
چکیده

The fungal cell wall is the external and first layer that fungi use to interact with the environment. Every stress signal, before being translated into an appropriate stress response, needs to overtake this layer. Many signaling pathways are involved in translating stress signals, but the cell wall integrity (CWI) signaling pathway is the one responsible for the maintenance and biosynthesis of the fungal cell wall. In fungi, the CWI signal is composed of a mitogen-activated protein kinase (MAPK) module. After the start of the phosphorylation cascade, the CWI signal induces the expression of cell-wall-related genes. However, the function of the CWI signal is not merely the activation of cell wall biosynthesis, but also the regulation of expression and production of specific molecules that are used by fungi to better compete in the environment. These molecules are normally defined as secondary metabolites or natural products. This review is focused on secondary metabolites affected by the CWI signal pathway with a special focus on relevant natural products such as melanins, mycotoxins, and antibacterial compounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-proliferative effect and apoptotic induction of sesquiterpene lactone parthenolide in a human breast cancer cell line

Parthenolide is a secondary metabolite, which naturally occurs in the feverfew plant and is responsible for its healing power. The potential of parthenolide in inhibition of cancer cell growth, alone or in combination with other anti-cancer therapeutics, have been studied in several laboratories. In this study, the effect of extracted parthenolide on the expression of seven pro-apoptotic genes,...

متن کامل

Using elicitors for enhanced production of secondary metabolites in plant cell and organ suspension cultures

In biotechnology has been concentrated to review alternative routes for the production of natural compounds. Plant cell culture systems are viable alternatives for the production of secondary metabolites that are of commercial importance in food and pharmaceutical industries. However, relatively very few cultures synthesize these compounds over extended periods in amounts comparable to those fo...

متن کامل

Using elicitors for enhanced production of secondary metabolites in plant cell and organ suspension cultures

In biotechnology has been concentrated to review alternative routes for the production of natural compounds. Plant cell culture systems are viable alternatives for the production of secondary metabolites that are of commercial importance in food and pharmaceutical industries. However, relatively very few cultures synthesize these compounds over extended periods in amounts comparable to those fo...

متن کامل

Callus culture of Echium amoenum Fisch. & Mey. and its major secondary metabolite

Echium amoenum Fisch. & Mey. (Boraginaceae) is a very popular medicinal plant that is used as a tonic, tranquillizer, diaphoretic, and a remedy for cough, sore throat and pneumonia in traditional medicine of Iran. Callus culture of medicinal plants is one of the ways for production of secondary metabolites. In this study, we investigated callus culture of E. amoenum and the major secondary meta...

متن کامل

Effect of ultrasound on the production of Carvone as a secondary metabolite in callus derived from Bunium persicum Boiss.

Background & Aim: Medicinal plants are most valuable and useful sources as productive factors of drugs. Production and extraction of secondary metabolites have a huge economical importance in recent years. Carvone is a compound in Bunium persicum fruit and shoot and, it is one of the wide range varieties of valuable and useful secondary metabolites. Due to limited crop production, usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017